140 research outputs found

    Status of ANITA and ANITA-lite

    Full text link
    We describe a new experiment to search for neutrinos with energies above 3 x 10^18 eV based on the observation of short duration radio pulses that are emitted from neutrino-initiated cascades. The primary objective of the ANtarctic Impulse Transient Antenna (ANITA) mission is to measure the flux of Greisen-Zatsepin-Kuzmin (GZK) neutrinos and search for neutrinos from Active Galactic Nuclei (AGN). We present first results obtained from the successful launch of a 2-antenna prototype instrument (called ANITA-lite) that circled Antarctica for 18 days during the 03/04 Antarctic campaign and show preliminary results from attenuation length studies of electromagnetic waves at radio frequencies in Antarctic ice. The ANITA detector is funded by NASA, and the first flight is scheduled for December 2006.Comment: 9 pages, 8 figures, to be published in Proceedings of International School of Cosmic Ray Astrophysics, 14th Course: "Neutrinos and Explosive Events in the Universe", Erice, Italy, 2-13 July 200

    Measuring diffuse neutrino fluxes with IceCube

    Full text link
    In this paper the sensitivity of a future kilometer-sized neutrino detector to detect and measure the diffuse flux of high energy neutrinos is evaluated. Event rates in established detection channels, such as muon events from charged current muon neutrino interactions or cascade events from electron neutrino and tau neutrino interactions, are calculated using a detailed Monte Carlo simulation. Neutrino fluxes as expected from prompt charm decay in the atmosphere or from astrophysical sources such as Active Galactic Nuclei are modeled assuming power laws. The ability to measure the normalization and slope of these spectra is then analyzed. It is found that the cascade channel generally has a high sensitivity for the detection and characterization of the diffuse flux, when compared to what is expected for the upgoing- and downgoing-muon channels. A flux at the level of the Waxman-Bahcall upper bound should be detectable in all channels separately while a combination of the information of the different channels will allow detection of a flux more than one order of magnitude lower. Neutrinos from the prompt decay of charmed mesons in the atmosphere should be detectable in future measurements for all but the lowest predictions.Comment: 12 pages, 3 figure

    The AMANDA Neutrino Telescope and the Indirect Search for Dark Matter

    Get PDF
    With an effective telescope area of order 10^4 m^2, a threshold of ~50 GeV and a pointing accuracy of 2.5 degrees, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe its performance, focussing on the capability to detect halo dark matter particles via their annihilation into neutrinos.Comment: Latex2.09, 16 pages, uses epsf.sty to place 15 postscript figures. Talk presented at the 3rd International Symposium on Sources and Detection of Dark Matter in the Universe (DM98), Santa Monica, California, Feb. 199

    New Limits on the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment

    Get PDF
    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of 3 EeV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultra-high energy extensive air showers.Comment: 4 pages, 2 table

    Observations of the Askaryan Effect in Ice

    Get PDF
    We report on the first observations of the Askaryan effect in ice: coherent impulsive radio Cherenkov radiation from the charge asymmetry in an electromagnetic (EM) shower. Such radiation has been observed in silica sand and rock salt, but this is the first direct observation from an EM shower in ice. These measurements are important since the majority of experiments to date that rely on the effect for ultra-high energy neutrino detection are being performed using ice as the target medium. As part of the complete validation process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we performed an experiment at the Stanford Linear Accelerator Center (SLAC) in June 2006 using a 7.5 metric ton ice target, yielding results fully consistent with theoretical expectations

    The AMANDA Neutrino Telescope: Principle of Operation and First Results

    Get PDF
    AMANDA is a high-energy neutrino telescope presently under construction at the geographical South Pole. In the Antarctic summer 1995/96, an array of 80 optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths between 1.5 and 2 km. In this paper we describe the design and performance of the AMANDA-B4 prototype, based on data collected between February and November 1996. Monte Carlo simulations of the detector response to down-going atmospheric muon tracks show that the global behavior of the detector is understood. We describe the data analysis method and present first results on atmospheric muon reconstruction and separation of neutrino candidates. The AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97 (AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.Comment: 36 pages, 23 figures, submitted to Astroparticle Physic

    Enhanced Cosmological GRB Rates and Implications for Cosmogenic Neutrinos

    Get PDF
    Gamma-ray bursts, which are among the most violent events in the universe, are one of the few viable candidates to produce ultrahigh energy cosmic rays. Recently, observations have revealed that GRBs generally originate from metal-poor galaxies and do not directly trace cosmic star formation, as might have been assumed from their association with core-collapse supernovae. Several implications follow from these findings. The redshift distribution of observed GRBs is expected to peak at higher redshift (compared to cosmic star formation), which is supported by the mean redshift of the Swift GRB sample, ~3. If GRBs are, in fact, the source of the observed UHECR, then cosmic-ray production would evolve with redshift in a stronger fashion than has been previously suggested. This necessarily leads, through the GZK process, to an enhancement in the flux of cosmogenic neutrinos, providing a near-term approach for testing the gamma-ray burst-cosmic ray connection with ongoing and proposed UHE neutrino experiments.Comment: 9 pages, 5 figures, references and two appendices added, conclusions unchanged; accepted for publication in Phys.Rev.

    The AMANDA Neutrino Telescope

    Full text link
    With an effective telescope area of order 10410^4 m2^2 for TeV neutrinos, a threshold near \sim50 GeV and a pointing accuracy of 2.5 degrees per muon track, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe early results on the calibration of natural deep ice as a particle detector as well as on AMANDA's performance as a neutrino telescope.Comment: 12 pages, Latex2.09, uses espcrc2.sty and epsf.sty, 13 postscript files included. Talk presented at the 18th International Conference on Neutrino Physics and Astrophysics (Neutrino 98), Takayama, Japan, June 199

    Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    Full text link
    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x 10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.Comment: Submitted to Physical Review Letter
    corecore